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ABSTRACT
This paper demonstrates the reflection phenomenon of the mag
neto-thermoelastic planewaves froma stress-free surface of a homo-
geneous, isotropic, thermally and electrically conducting solid half-
space. We employ the generalized thermoelasticity model with
memory-dependent derivative (MDD) for this study. We find that
three basic plane waves consisting of two sets of coupled longitu-
dinal waves and one independent shear type wave may travel with
distinct speeds in the medium. The speeds of the coupled longitu-
dinal waves are plotted graphically to predict a comparison for the
MDD and Lord–Shulmanmodels. At last, for an appropriatematerial,
the reflection coefficients are computed numerically and presented
graphically with the angle of incidence of the incident (vertically
polarized) shear type wave and the obtained results are explained.
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1. Introduction

Non-local continuum field theories are concerned with the physics of material bodies
whose behavior at a material point is influenced by the state of all points of the body
[1]. The non-local theory generalizes the classical field theory in two respects: (1) the
energy balance law is considered valid globally; and (2) the state of the body at a mate-
rial point is described by the response functional. In this description, non-locality in time
is known as memory dependence. The theory of heat conduction in continuous media
with memory has drawn the attention of many researchers. Initially, the motivation was
to avoid the unpleasant feature of the classical coupled heat conduction model [2] in
which the the thermal signals propagate with infinite speed. To overcome this techni-
cal issue, by incorporating the thermal relaxation times into the heat flux model, several
researchers have attempt to modify the coupled dynamic thermoelasticity theory. These
studies were based on several modifications of Fourier’s law of heat conduction. The
aim of enhancement was to derive hyperbolic-type partial differential equations to gov-
ern the heat conduction properties to simultaneously satisfy the following conditions:
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(1) finiteness of heat signal propagation speed, (2) spatial propagation of thermoelas-
tic waves without attenuation, and (3) existence of distortionless waveforms akin to the
classical d’Alembert-type waves. Cattaneo [3] proposed a wave-type heat equation by pos-
tulating a new law of heat conduction to replace the classical Fourier’s law. Lord and
Shulman [4], Green and Lindsay [5], and Green and Naghdi [6] proposed three different
generalized heat conduction equationswhich are themost discussed hyperbolic-type heat
equations in the literature. These models keep running under the mark of “hyperbolic
thermoelasticity”.

Wave reflection phenomena may applicable in various fields like geophysical explo-
ration, seismology, engineering etc. Several problems on reflection of plane harmonic
wave in coupled and generalized thermoelasticity theories have been investigated by
many authors [7]. Great attention has been employed inside the nuclear reactors to
influence its design as well as functions and consequently in the study of magneto-
thermoelastic interactions using the linear theory of generalized thermoelasticity. The
interplay of Maxwell electromagnetic field with the motion of deformable solid is largely
being undertaken by many authors due to its possible applications to geophysical prob-
lems and certain other topics in acoustics. The earth is subjected to its own mag-
netic field and the material of the earth may be assumed as electrically conducting
medium. Thus the magneto-elastic nature of the earth’s material may affect the prop-
agation of plane waves [8]. Paria reported magneto-thermo-elastic plane waves in [9].
Nayfeh and Nemat-Nasser [10] reported electromagneto-thermoelastic plane waves in
solids with thermal relaxation and Agarwal [11] studied a problem on electromagneto-
thermoelastic plane waves. Roychoudhuri [12] studied electro-magneto-thermo-elastic
plane waves in rotating media with thermal relaxation. Abd-Alla et al. [13] reported a
work on the reflection of the generalized magneto-thermo-viscoelastic plane waves. Roy
Choudhuri and Banerjee [14] investigated magneto-viscoelastic plane waves in rotating
media in the generalized thermoelasticity II. Some other notable works can be found in the
literatures [15–20].

Memory-dependent derivatives (MDDs) were first incorporated in Fourier’s law of heat
conduction, a new hyperbolic-type heat conduction equation by Wang and Li [21]. This
newgeneralization of hyperbolic-type heat conductionmodels is accepted as themodified
heat conduction law with measuring memory. In this paper, we investigate the reflec-
tion of the magneto-thermoelastic plane waves from a stress-free and thermally insulated
surface of a homogeneous, isotropic, thermally and electrically conducting solid half-
space in the frame of the generalized thermoelasticity under heat transfer with an MDD
[22]. We find that three basic plane waves consisting of two sets of coupled longitudi-
nal waves and one independent shear type wave may travel with distinct phase speeds
in the medium considered. All these waves are influenced by the presence of magnetic
field and the MDD. The formulae for various reflection coefficients are determined for an
incident SV-type wave at a thermally insulated stress-free boundary. The phase speeds of
the coupled longitudinal waves are plotted graphically to predict a comparison between
the MDD and the Lord–Shulman (LS) models. The numerical results for the reflection coef-
ficients for various values of the angle of incidence of the incident (vertically polarized)
shear wave are illustrated graphically for copper like material and highlight the effect of
the magnetic pressure number, time-delay, Poison ration, and the thermoelastic coupling
parameter.
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2. Memory inmaterial modeling

Scott Blair’s model [23], which is basically a material model, includes a formula for memory
phenomena in various disciplines. The model takes the form

0Dα
t ε(t) = κσ(t), (1)

where 0Dα
t ε(t) denotes the fractional-order derivative which depends on the strain history

from 0 to t. For integral value of α = n, 0Dα
t ε(t) = dnε(t)/dtn, and κ > 0 is a constant.

A fractional-order derivative is a generalization of an integer order derivative and inte-
gral. It originated from a letter of L’Hopital to Leibnitz in 1695 regarding themeaning of the
half-order derivative. It is a promising tool for describingmemory phenomena [24, 25]. The
kernel function of a fractional derivative is termed the memory function, but it does not
replicate any physical process. Imprecise physical meaning has been a big obstacle that
keeps fractional derivatives lagging far behind the integer-order calculus. There are several
definitions of a fractional derivative. The Riemann–Liouville derivative is one of the most
standard definitions

0Dα
t ε(t) = 1

�(n − α)

dn

dtn

∫ t

0

ε(s)

(t − s)1+α−n ds, m − 1 ≤ α < m,

where �(·) is the Euler’s gamma function and m is an integer. A memory process gener-
ally consists of two stages: the first is short, with permanent retention at the beginning,
and it cannot be neglected in general, and the second is governed by the fractional model
Equation (1). The critical point between the fresh stage and theworking stage is usually not
the origin. This is quite different from the traditional fractionalmodels of one stage. The key
point is that the order of a fractional derivative is an index of memory. The dimensionless
form of the solution of Equation (1) is

E(η) = ηα − (η − 1)α , (2)

where η = t/tM and E(η) = ε(t)/εM, where εM is the strain at the end of time of creeping
t = tM. Equation (2) reveals that E(η) increases with an increase in α. The higher the value
of the index α, the slower is the forgetting during the process. In particular, at α = 0, E = 0,
meaning that “nothing is memorized”, and E=1 for α = 1 which means that “nothing is
forgotten”. Therefore, the fractional order α is basically termed as the index of the memory
effect.

For a standard creep and recovery process, the specimen is usually loaded under a con-
stant stress σ(t) = σ0 from 0 to tM, and the load is removed at the instant t = tM, then
σ(t) = 0 for t ≥ tM. If H(t) is the Heaviside function, Equation (1) takes the following form:

0Dα
t ε(t) = κσ0 (H(t)− H(t − tM)) ,

where 0Dα
t ε(t) is the Riemann–Liouville fractional-order derivative with zero initial condi-

tion. The superposition method gives the solution of the above equation as follows:

ε(t) = κσ0

�(1 + α)

[
tαH(t)− (t − tM)

αH(t − tM)
]
.

This is in agreement with the early observation of the behavior of some viscoelastic
materials.
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Equation (1) works not only inmodeling viscoelastic materials, but also inmodeling bio-
logical kinetics withmemory. For example, for protein adsorption kinetics, if the symbols σ
and ε are replacedwith the concentration c and the surface density � of fibronectin therein,
respectively, then

σ(t) = σ0 [H(t)− H(t − tM)+ H(t − tN)] ,

where σ0 = 50µg/ml, tm = 240 s, and tN = 1150 s. The absorbed density is found to be

ε(t) = κσ0

�(1 + α)

[
tαH(t)− (t − tM)αH(t − tM)+ (t − tN)αH(t − tN)

]
.

3. Memory-dependent derivatives

In the last decade, non-integral (fractional)-order derivatives and fractional differential
equations have gained considerably more attention in the fields of applied sciences and
various engineering disciplines [22, 26, 27]. Gorenflo and Mainardi [28], and Atanackovic
et al. [29] provided diverse theoretical advances and recent applications of fractional cal-
culus. One hindrance to the wider use of fractional-order methods by engineers is the
absence of a simple geometric picture for the fractional-order integral. There are several
definitions of fractional derivatives (e.g. Riemann–Liouville, Caputo, Reisz, and Grunwald-
Letnikov [28]), each of which has specific advantages and limitations, particularly when
used to define a distribution of fluxes into a control volume or the effects of fadingmemory
on the forces applied in a free body diagram. Diethelm [30] incorporated a kernel function
and modified a Caputo-type fractional-order derivative as

Dα
a f (t) =

∫ t

a
kα(t − ξ)fm(ξ)dξ ,

where kα(t − ξ) is the kernel function, and fm is the mth order derivative. In applications,
kα(t − ξ) takes some specific form, e.g.

kα(t − ξ) = (t − ξ)m−α−1

�(m − α)
.

Wang and Li [21] proposed another form of the fractional derivative with arbitrary kernel
K(t − ξ) (can be chosen freely) over a slipping interval [t − τ , t] as follows:

D(1)
τ f (t) = 1

τ

∫ t

t−τ
K(t − ξ)f ′(ξ)dξ ,

where τ (> 0) is called the delay time, which also can be chosen freely. The precedingmod-
ifications of fractional-orderedderivatives are termedMDDs. In general, themth orderMDD
of a differentiable function f (t) relative to the time delay a>0 is defined as

D(m)
a f (t) = 1

τ

∫ t

t−a
K(t, ξ)f (m)(ξ)dξ ,

where the time delay a denotes the memory scale, and the kernel function K(t.ξ) must
be a differentiable function with respect to its arguments. The kernel function and the
memory scales must be chosen in such a way that they are compatible with the physical
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problem, so this type of derivative provides more possibilities to capture the material
response. Generally, the memory effect needs weight 0 ≤ K(t − ξ) ≤ 1 for ξ ∈ [t − τ , t] so
that the magnitude of Dτ f (t) is usually smaller than that of the common derivative f ′(t).
Simply the right-hand side of (1) is a weighted mean of f ′(t). As ξ ∈ [t − τ , t], one can eas-
ily understand that the function f (ξ) takes value from different points on the time interval
[t − τ , t]. Considering our present time as t, we can say [t − τ , t) is the past time interval.
Thuswe conclude themain feature ofMDD that is the functional value in real time depends
on the past time also. That is why Dτ is called the non-local operator whereas integer order
derivative or integration) is a local operator (i.e. it does not depend on the past time). The
kernel function K(t − ξ) can be chosen freely, such as 1, [1 − (t − ξ)], [1 − (t − ξ)/τ ]p for
any positive real number pwhich may be more practical. They are a monotonic increasing
function from 0 to 1 in the interval [t − τ , t]. According to the nature of the problem, one
can select a suitable kernel function of his/her choice.

4. Thermoelasticity model usingMDDs

From theMaxwell–Cattaneo theory toGreen–Naghdi generalized thermoelasticitymodels,
it is well established that thermal memory has a significant role in the theory of thermoe-
lasticity. In the twenty-first century, memory components have been introduced in terms
of fractional-order derivatives in numerous forms, as follows:

(1) Sherief et al. [31] introduced fractional derivatives in the heat flux laws and modified
Fourier’s law in the following manner:(

1 + τα
∂α

∂tα

)
qi = −KT�,i, 0 < α ≤ 1,

where qi are the heat flux components, � = T − T0 is the temperature increment
above the uniform reference temperature T0 of the medium, T is the absolute tem-
perature of the medium and KT is the thermal conductivity.

(2) Youssef [32] introduced a fractional integral into the heat flow relation(
1 + τ

∂

∂t

)
qi = −KT I

α−1�,i, 0 < α ≤ 2,

where I(·) is the Riemann–Liouville integral operator.
(3) Ezzat and Fayik [33] adopted the generalized fractional-order Taylor series expansion(

1 + τα

α!
∂α

∂tα

)
qi = −KT�,i, 0 < α ≤ 1.

In these fractionalmodels ofmodifiedheat flux laws, thememory response is described
by the fractional index parameter.

(4) Yu et al. [34] introduced MDDs in the heat conduction law in the following way:

(1 + τDa) qi = −KT�,i,

where Daf (t) = D(1)a f (t).
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(5) Later, Ezzat et al. [22, 26] introduced the first order MDD, instead of fractional calcu-
lus, into the rate of heat flux in LS theory [4] of generalized thermoelasticity to denote
memory-dependence as: (

1 + τ0Dτ0
)
qi = −KT�,i,

where τ0 is introduced as the time delay parameter. Equation (15) provides the follow-
ing advantages compared with the aforementioned amendments of Fourier’s law by
using fractional derivatives: (1) the influence of memory dependency claims it’s supe-
riority in terms of memory scale parameter; (2) in a limiting sense, this simplification
develops the LSmodel of generalized thermoelasticity; and (3) because the kernel func-
tion and thememory scale parametersmaybe chosen subjectively, it ismoremalleable
in many practical applications.

5. Governing equations and formulation of the problem

In this paper, we consider a homogeneous isotropic, thermally and electrically conducting
elastic half-space: M = {(x, y, z);−∞ < x, y < ∞, 0 ≤ z < ∞}, at uniform reference tem-
perature T0, in the undisturbed state and discuss the thermal and elastic plane waves
motion of small amplitude. ThemediumM is under the action of a uniformmagnetic field of
intensity �H0 acting in thepositivedirectionof y-axis, so that �H0 = (0,H0, 0) (H0 is a constant).
Let the origin O of a fixed rectangular Cartesian coordinate system Oxyz be fixed at a point
on the plane boundary z=0 with z-axis pointing vertically downward into M and x-axis is
directed along the horizontal direction (see Figure 1). The y-axis is taken in the direction of
the line of intersection of the plane wave front with the plane surface. The boundary sur-
face z=0 is assumed to be thermally insulated and free from mechanical stresses. Due to
the application of themagnetic field �H0, an inducedmagnetic field �h = (0, h, 0), an induced
electric field �E = (E1, 0, E3), and an electric current density �J = (J1, 0, J3) are developed in
themediumMwhich satisfy the following simplified linearized equations of electrodynam-
ics of slowly moving continuous media having perfect electrical conductivity in absence of
displacement current [12]:

�J = �∇ × �h, (3)

�∇ × �E = −μ0 �̇h, (4)

�E = −μ0(�̇u × �H), (5)

∇ · �h = 0, (6)

where �J is the electric current density, �H is the total magnetic field, μ0 is the magnetic
permeability of solid, and �H = (0,H0 + h, 0) is the total magnetic field. The small effect of
temperature gradient on �J is ignored. We also assume that both �h and �E are small in mag-
nitude in accordance with the assumptions of the linear theory of thermoelasticity. Also,
there arises the Lorentz Force, �F = μ0(�J × �H). Due to the effect of the force, points of the
medium undergo a displacement vector �u, which gives rise to a temperature. Motivated
by this fact, the displacement-temperature formulation is adopted here although in some
other practical cases the stress-temperature formulations have a number of advantages.
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Figure 1. Geometry of the problem showing incident and reflected waves at the surface z= 0.

If we restrict our analysis to a plane strain parallel to xz−plane with displacement vector
�u(x, z, t) = (u, 0,w) and temperature change�(x, z, t), then the fundamental equations of
motion, heat conduction equation and the stress-strain-temperature relation, in absence
of heat sources, in generalized thermoelasticity with memory-dependent heat transfer
developed by Ezzat et al. [22, 26] can be written in vector form as

μ∇2�u + (λ+ μ) �∇ �∇ · �u − γ �∇�+ �F = ρ �̈u, (7)

KT∇2� = ∂

∂t
(1 + τDτ )

(
ρCE�+ γ T0 �∇ · �u

)
, (8)

�τ = λ �∇ · �u�I + μ
[∇�u + ∇�uT] − γ��I, (9)

where∇2 ≡ (∂2/∂x2 + ∂2/∂z2),λ, μ are Lamé constants, γ = (3λ+ 2μ)αT is the thermoe-
lastic coupling parameter, αT is the coefficient of linear thermal expansion, ρ is the mass
density, CE is the specific heat at constant strain, �τ is the stress tensor, and�I is the identity
tensor of order 3. All the considered functions are assumed to be bounded as x → +∞. The
comma notation is used for spatial derivatives and the superposed dot represents the time
differentiation.

Equations (3)–(5) yield the Lorentz Force vector, �F as

�F = μ0H
2
0

(
�∇ �∇ · �u

)
. (10)

In our present study, we shall deal with the following kernel function:

K(t − ξ) = A + B(t − ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 if A = 1

2 , B = 0,
1
2 −

(
t−ξ
τ

)
if A = 1

2 , B = − 1
τ
,

1 − (t − ξ) if A = 1, B = −1,

(11)

where A and B are constants.
Equations (7) and (8) represent a fully hyperbolic system that permits finite speed for

both elastic and thermal disturbances. Following Ezzat and Youssef [35], we now define
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the following dimensionless quantities

(x′, z′) = CLη(x, z), (u′,w′) = CLη(u,w), t′ = C2Lηt ,�
′ = γ�

ρC2L
, τ ′

ij =
τij

ρC2L
,

where C2L = (λ+ 2μ)/ρ is the speed of classical longitudinal wave (P-wave) and η =
ρCE/KT .

Upon using the above quantities along with Equation (10) into Equations (7)–(9), and
suppressing the primes for convenience, we obtain

β2∇2�u + (1 − β2 + RM) �∇ �∇ · �u − �∇� = �̈u, (12)

∇2� = ∂

∂t
(1 + τDτ )

(
�+ εT �∇ · �u

)
, (13)

�τ = (1 − 2β2) �∇ · �u�I + β2
[∇�u + ∇�uT] −��I, (14)

where β2 = μ/(λ+ 2μ) is the ratio of the classical SV-wave speed to the classical P-wave
speed, RM = μ0H2

0/(λ+ 2μ) is themagnetic pressure number [9], and εT = γ 2T0/[ρCE(λ+
2μ)] is the dimensionless thermoelastic coupling constant.

We now introduce the displacement potentials φ (corresponds to dilatational wave) and
ψ (corresponds to shear wave) through the Helmholtz vector representation as

u = �∇φ + �∇ × �ψ , �∇ · �ψ = 0. (15)

Inserting (15) into Equations (12)–(14), we write

�∇ [
β2∇2φ + (1 − β2 + RM)∇2φ − φ̈ −�

] + �∇ ×
[
β2∇2 �ψ − �̈ψ

]
= 0, (16)

∇2�− (1 + τDτ ) �̇ = εT (1 + τDτ )∇2φ̇. (17)

Equation (16) will be satisfied if

(1 + RM)∇2φ − ∂2φ

∂t2
−� = 0, (18)

β2∇2 �ψ − ∂2 �ψ
∂t2

= 0. (19)

Equations (17) and (18) reveal that the thermal field� is coupled with the potential φ only
and so creates two coupled longitudinal waves, namely, a coupled dilatational elastic wave
(CP-wave) and a coupled thermal wave (CT-wave). Eliminating � between Equations (17)
and (18), we get

(1 + RM)∇4φ − [
(1 + εT + RM) (1 + τDτ )∇2φ̇ + ∇2φ̈

] + (1 + τDτ )
...
φ = 0. (20)

Considering (15), we may choose �ψ = (0,ψ , 0), and hence Equation (19) takes the form

∇2ψ = 1
β2
ψ̈ . (21)

Thus, the potential ψ corresponds to the displacement motion in the xz-plane due to a
SV-type wave.
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6. Dispersion equation and its solutions

For a harmonic plane wave propagating in the direction where the wave normal vector lies
in the xz−planemaking an angle θ0 with the positive z-axis, the solutions of Equations (20)
and (21) may be assumed as

(φ,ψ) = (
φ0,ψ0) exp{ιk(x sin θ0 − z cos θ0)− ιωt}, (22)

where φ0, ψ0 are the constants (possibly complex) representing the coefficients of the
wave amplitudes, ι = √−1, k is the dimensionless wavenumber (possibly complex) to be
determined, and ω is the dimensionless assigned real angular frequency. If we set k =
�(k)+ ι(k), (where�(·) and (·) denote the real and imaginary parts of a complex num-
ber, respectively), it may be verified that for the waves to be physically realistic, we should
have �(k) > 0 and (k) ≥ 0 and that only the real parts of the solution (22) are physically
relevant [36]. Also note that x and z in (22) are both non-negative, i.e. x, z ≥ 0. Then, on the
surface z=0, the term exp[−x(k) sin θ0] → 0 as x → +∞ which in turn means that the
energy represented by the wave solutions (22) is bounded (Billingham and King [37]). Fur-
ther, the solution (22) corresponds to waves for which ω/�(k) is the phase speed and (k)
is the decay (attenuation) coefficient.

Substituting from Equation (22) into Equations (20) and (21), we get

k4 − L1k
2 + L2 = 0, (23)

k2 = ω2

β2
, (24)

where

L1 = ιω(1 + G)(1 + εT + RM)+ ω2

(1 + RM)
, L2 = iω3(1 + G)

(1 + RM)
, G ≡ G(τ ,ω)

= (Aω + ιB)[1 − exp(ιτω)]
ω

− Bτ exp(ιτω). (25)

The quadratic Equation (23) in k2 is the general dispersion relation for the wave propaga-
tion in generalized thermoelasticity with MDD. Clearly, the coefficients L1 and L2 in (25) are
complex for ω > 0. The two roots of (23) and the only root of Equation (24) are given by

k22,1 = 1
2

[
L1 ±

√
L21 − 4L2

]
, (26)

k23 = ω2

β2
. (27)

Here k21 corresponds to “ –” sign and k22 corresponds to “+” sign. For a given positive ω,
Equation (23) gives us four roots of the form ±k1 and ±k2, for k. Of these four roots, only
two roots yieldpositive values for�(k)with(k1,2) ≥ 0.Hence, there are twodistinct travel-
ing coupled longitudinal waves of wave number k1,2, namely, a coupled dilatational elastic
wave (CP-wave) and a coupled thermalwave (CT-wave). Both of thesewaves are influenced
by elastic as well as thermal andmagnetic fields. This result agrees with that in the conven-
tional coupled as well as LS theories [2, 4] of thermoelasticity. In these theories, it has also
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been observed that one of the longitudinal waves is a CP-wave and the other is a CT-wave.
The phase speeds of the CP- and CT-waves are given by V1,2 = ω/�(k1,2). Since the atten-
uation coefficients (k1,2) and phase speeds V1,2 are functions of ω, which in turn means
that the coupleddilatational elastic-thermalwaves suffer attenuation anddispersiondue to
the magneto-thermoelastic character of the considered medium. The magnetic field, elas-
ticmaterial properties of themedium, time-delay and kernel function ofMDD influence the
dispersion and attenuation nature of the waves. Besides, since the wavenumbers of both
the waves are complex, so they are inhomogeneous waves.

In case of UCT (εT = 0)without considering the magnetic field effect (H0 = 0), we find

V1(εT = 0) = 1, V2(εT = 0) =
√
ω

�[ι(1 + G)]1/2
.

Thus for the present problem, we conclude that while V1 represents the speed of CP-wave,
V2 the speedofCT-wave (according toour considerationof the signof k21 and k

2
2). For εT �= 0,

the CP-wave and CT-wave are coupled dilatational elastic-thermal waves and the coupling
is measured by the following amplitudes ratio:

ζj =
[
ω2 − (1 + RM)k

2
j

]
=

εTω(1 + G)k2j[
ω(1 + G)+ ιk2j

] (j = 1, 2). (28)

A look at Equation (27) reveals that there exist one SV-type wave of wavenumber k3 whose
phase speed is

V3 = β . (29)

Expression (29) indicates that the SV-type wave remains unaffected by the presence of the
magnetic field and thermal wave effect. It is also noted that this wave is non-dispersive and
propagates in the medium considered without being attenuated.

7. Perturbation solution of dispersive waves

The perturbationmethod has beenwidely used [10–12, 14, 38] to study thewave propaga-
tion problems in classical (coupled) and non-classical (generalized) thermoelastic continua.
Here, our aim is to derive the perturbation solutions of the instant problem in this section.
The dispersion Equation (23) can also be rewritten as

f (k2)− εTg(k
2) = 0, (30)

where

f (k2) = (1 + RM)k
4 − k2

[
ιω(1 + G)(1 + RM)+ ω2] + iω3(1 + G),

g(k2) = ιω(1 + G)k2. (31)

For most of the materials the thermo-mechanical coupling parameter εθ is very small
and therefore, we develop series expansions in terms of εθ for the roots k2j (j = 1, 2) of
Equation (23) in order to explore the effect of various interacting fields on the waves.
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Thus, for εT � 1, we obtain the the perturbation solutions for the roots from (30)
and (31) as

k21(εT ) = ω2

(1 + RM)

[
1 − (1 + G)

(1 + G)(1 + RM)+ ιω
εT + · · ·

]
, (32)

k22(εT ) = ιω(1 + G)

[
1 + (1 + G)

(1 + G)(1 + RM)+ ιω
εT + · · ·

]
. (33)

8. Reflection phenomena of magneto-thermoelastic waves

Let a train of SV-type wave having amplitude B0 and phase speed V3 is made incident
making an angle θ0 with the normal to the free surface z=0 as shown in Figure 1. Assum-
ing that the radiation in vacuum is neglected, when SV-type wave impinges the boundary
z=0, three reflected waves in the medium are created. Suppose the reflected CP-, CT- and
SV-type waves make angles θ1, θ2 and θ3 respectively with positive the z-axis. Then the
complete structure of the wave fields consisting of the incident and reflected waves in the
mediumMmay be written as

φ = A1 exp {ιk1(x sin θ1 + z cos θ1)− ιωt} + A2 exp {ιk2(x sin θ2 + z cos θ2)− ιωt}, (34)

� = ζ1A1 exp {ιk1(x sin θ1 + z cos θ1)− ιωt} + ζ2A2 exp {ιk2(x sin θ2 + z cos θ2)− ιωt},
(35)

ψ = B0 exp {ιk3(x sin θ0 − z cos θ0)− ιωt} + B1 exp {ιk3(x sin θ3 + z cos θ3)− ιωt}, (36)

where A1, A2 and B1 represent the coefficients of amplitudes of the reflected CP-, CT- and
SV-type waves, respectively. The reflection coefficient is defined as the amplitude ratio of
the reflected wave to the incident wave and is determined by the appropriate boundary
conditions on the surface z=0.

We consider the surface z=0 as stress-free and thermally insulated. These conditions
can be written mathematically as:

τzz + τ̄zz = τxz + τ̄xz = ∂�

∂z
= 0, at z = 0, (37)

where τ̄ij is the Maxwell’s electro-magneto stress tensor, given by

τ̄ij = μ0

[
Hihj + Hjhi − (�H · �h)δij

]
(i, j = x, z). (38)

In terms of displacement potential functions, first two conditions in (37) are simplified to

(1 + RM)

(
∂2φ

∂z2
+ ∂2φ

∂x2

)
+ 2β2

(
∂2ψ

∂x∂z
− ∂2φ

∂x2

)
−� = 0, (39)

(
2
∂2φ

∂x∂z
+ ∂2ψ

∂x2
− ∂2ψ

∂z2

)
= 0, at z = 0. (40)

In order to satisfy the above boundary conditions at z=0, the following relation must be
hold on z=0:

k3 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3, (41)
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or in the form

θ0 = θ3 and
sin θ1
V1

= sin θ2
V2

= sin θ0
V3

, at z = 0, (42)

which is often refereed as extended Snell’s law.
Substituting from Equations (34)–(36) into the boundary conditions (37), (39) and (40),

and using the relation (41), the following system of equations for the reflection coefficients
RSP = A1/A0, RST = A2/A0, RSS = B1/A0 is obtained:

⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 0

⎤
⎦

⎡
⎣RSP
RST
RSS

⎤
⎦ =

⎡
⎣−a13

a23
0

⎤
⎦ , (43)

where

a11 = ω2 − 2β2k21 sin
2 θ0, a12 = ω2 − 2β2k22 sin

2 θ2, a13 = ω2 sin 2θ3,

a21 = k21 sin 2θ0, a22 = k22 sin 2θ2, a23 = −k23 cos 2θ3,

a31 = ζ1k1 cos θ1, a32 = ζ2k2 cos θ2.

After solving (43), we get the reflection coefficients in explicit forms as follows:

RSP = β2ζ2k2k23 sin (4θ0) cos (θ2)

−ζ1k1 cos (θ1)
(
ω2 cos (2θ0)+ 2β2k22 sin (2θ0 − θ2) sin (θ2)

) +
2β2ζ2k21k2 sin (2θ0 − θ1) sin (θ1) cos (θ2)+ ζ2k2ω2 cos (2θ0) cos (θ2)

, (44)

RST = β2ζ1k1k23 sin (4θ0) cos (θ1)

ζ1k1 cos (θ1)
(
ω2 cos (2θ0)+ 2β2k22 sin (2θ0 − θ2) sin (θ2)

) −
2β2ζ2k21k2 sin (2θ0 − θ1) sin (θ1) cos (θ2)+ ζ2k2ω2 (− cos (2θ0)) cos (θ2)

, (45)

RSS =
ζ1k1 cos (θ1)

(
2β2k22 sin (θ2) sin (2θ0 + θ2)− ω2 cos (2θ0)

) −
2β2ζ2k21k2 sin (θ1) sin (2θ0 + θ1) cos (θ2)+ ζ2k2ω2 cos (2θ0) cos (θ2)

ζ1k1 cos (θ1)
(
ω2 cos (2θ0)+ 2β2k22 sin (2θ0 − θ2) sin (θ2)

) −
2β2ζ2k21k2 sin (2θ0 − θ1) sin (θ1) cos (θ2)+ ζ2k2ω2 (− cos (2θ0)) cos (θ2)

. (46)

It is observed that these reflection coefficients depend on the angle of incidence (θ0), mag-
netic pressure number RM and the material properties of the thermoelastic medium. It can
be noted that for uncoupled thermoelasticity (εT = 0), ζj = 0 (j = 1, 2) and hence there is
no reflected CT-wave. So, in this case RST = 0 at all angle of incidence θ0.

9. Total reflection

We now consider the most interesting case namely, the case of total reflection beyond the
critical angle. By using the relation (41) into the solution (34), we get (after omitting the
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factor exp (−ιωt))

φ = A1 exp {ιk1(x sin θ1 + z cos θ1)} + A2 exp {ιk2(x sin θ2 + z cos θ2)},

= exp
{
ιω

V3
x sin θ0

}[
Ā1 exp

{
ιωz

V3

√
V2
3

V2
1

− sin2 θ0

}
+ Ā2 exp

{
ιωz

V3

√
V2
3

V2
2

− sin2 θ0

}]
,

(47)

where Āj = Aj exp {−(kj)(x sin θj + z cos θj)}, (kj) ≥ 0 (j = 1, 2).
Since V1 < V2, hence V3/V2 < V3/V1 and when θ0 increases, sin(θ0) increases to the

value V3/V2 first. If sin θ0 = V3/V2 = sin θC , then θ0 = θC is called the critical angle. For

θ0 > θC , the factor
√
V2
3/V

2
1 − sin2 θ0 becomes purely imaginary. The critical angle θC for

the elastic case is given by θC = sin−1(β) [39]. When sin θ0 > V3/V2, we obtain from (47)
that

φ = exp
{
ιω

V3
x sin θ0

} [
Ā1 exp

{
−ωz
V3

√
sin2 θ0 − V2

3

V2
1

}
+ Ā2 exp

{
−ωz
V3

√
sin2 θ0 − V2

3

V2
1

}]
,

(48)
Thus the thermal part and elastic part of the reflected coupled dilatational elastic-thermal
wavepropagateshorizontally in the x-directionwhereas its amplitudedecays exponentially
with depth (z).

10. Numerical results and discussions

In this section, we perform some numerical calculations in order to illustrate the analytical
results. For this purpose, we choose copper like material whose physical data are [26]: λ =
7.76 × 1010 N/m2, μ = 3.86 × 1010 N/m2, T0 = 293 K, ρ = 8954 kg/m3, Ce = 383.1m2/K ,
KT = 386N/K s, αT = 383.1 K−1, εT = 0.0168, RM = 0.5.

For the purpose of the numerical computations, we have selected a fixed kernel, namely
K(t, ξ) = 1/2 − (t − ξ)/τ . Using the above values of the material constants, the critical
angle is obtained as θC = 20.6◦.

Figure 2 expresses a comparison between the reflection coefficients |RSP|, |RST | and |RSS|
within the range of the incident angle θ0 (0◦ ≤ θ0 ≤ 90◦) of the incident SV-type wave.
It is noticed that the reflection coefficient of the reflected CP-wave dominates while the
reflected CT- and SV-type waves are both smaller than the reflection coefficient of the CP-
wave. Themaximumvalueof |RSP|occurs at θ0 = 0◦, while that of |RST | and |RSS|occur at the
critical angle θC = 20.60◦. The reflection coefficientof theSV-typewaveattains itsminimum
value, 0 at θ0 = 0◦.

The impact of the magnetic pressure number parameter RM upon the variations of the
modulli of the reflection coefficients are important in application point of view. It is evi-
dent from Figure 3 that all the reflection coefficients show significant changes for different
values of RM. The reflection coefficients |RST | and |RSS| decrease with an increase in the
value of RM. On the contrary, the reflection coefficient |RSP| increases with an increase in
RM. The pattern of the curves in each of the reflection coefficient are similar apart from the
magnitudes.
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Figure 2. Comparison of the reflection coefficients with respect to θ0.

Figure 3. Effect of the magnetic pressure number (RM) on the reflection coefficients.
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Figure 4. Comparison of the reflection coefficients for the MDD and LS models.

Figure 4 shows a comparison between the reflection coefficients obtained for the MDD
and the LS theories. It is evident from the Figures 4(a, c) that the reflection coefficients |RSP|
and |RSS| coincide for both the theorieswithin thewhole rangeof θ0 in contrast to the reflec-
tion coefficient |RST |. The difference in the profile of |RST | is occurred due to the presence
of the MDD in the heat conduction equation.

The influence of the Poison ratio σ upon the variations of the magnitudes of the reflec-
tion coefficients are also interesting. It is evident fromFigure 5 that the reflection coefficient
of the CP-wave is most sensitive to the Poison ratio while the reflection coefficient of the
CT-wave is most insensitive to σ . The increasing of the Poison ratio makes the reflected
CT-wave weaken. The reflection coefficients |RSP| and |RST | increase with an increase in the
value of σ in contrast to the reflection coefficient |RSS|.

Figure 6 is drawn to show the effect of the thermo-mechanical coupling parameter (εT )
on |RSP|, |RST | and |RSS|. From Figure 6, we observe that the absolute values of RSP and RST
have large values for the large value of εT meaning it has an increasing effect on |RSP| and
|RST | at each angle of incidence. On the other hand, εT shows an decreasing effect on |RSS|.
We can also see from these figures that the influence of the coupling parameter on |RSP|
and |RSS| is significantly pronounced whereas εT has a small effect on |RSS|.
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Figure 5. Variations of the reflection coefficients for different σ .

Figure 6. Variations of the reflection coefficients for different εT .



JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS 17

Figure 7. Three-dimensional variations of the reflection coefficients with respect to θ0 and RM.

In Figure 7, we reveals the three-dimensional distributions of |RSP|, |RST | and |RSS| with
respect to the incident angle θ0 and themagnetic pressure number RM. Finally, we observe
from Figures 2–6 that the critical angle (θC) of the incident SV-type wave for thermoelastic
case is θC = 20.6◦ which is exactly the same with the calculated value of θC .

In Figure 8, we plot the phase speeds and the attenuation coefficients of the CP-wave
and CT-wave with the angular frequency ω. We noticed that the phase speeds and the
attenuation coefficients of the CP-wave and the CT-wave have larger values for the L-
S theory as compared to the MDD theory where the only exception is found when we
plot the attenuation coefficient of the CP-wave. If we compare the phase speeds for
both the waves, we found CP-wave has larger magnitudes. When we compare the atten-
uation coefficients of both the waves, CP-wave experiences less attenuation. From this
set of figures, we can say that the memory effect is more sensitive for the phase speed
of the CT-wave as compared to the CP-wave. But for the case of attenuation, we have
seen a reverse effect of the MDD, i.e. the presence of memory plays a more significant
role for the attenuation coefficient of the CP-wave. Figures 8(c, d) reveal that the CP-
and the CT-waves experience attenuation. Also, the significant changes in the profiles
of the phase speeds of the CP- and CT-waves indicates that these waves are dispersive
in nature.
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Figure 8. Comparison of the phase speeds and the attenuation coefficients of the CP-wave andCT-wave
vs. non-dimensional angular frequency ω for MDD and L-S theories.

11. Conclusions

The following points can be concluded according to our present study:

(1) The reflection coefficients are functions of the angle of incidence, magnetic field and
the material properties of the thermoelastic medium.

(2) Magnetic pressure number, Poison ratio and the thermoelastic coupling parameter
affect significantly the reflection coefficients of all the waves. Poison ratio has no effect
on the phase speeds as well as attenuation coefficients.

(3) The phase speeds of the CP- and CT-wave is larger for LS model as compared to MDD
model. The CP- and CT-waves are dispersive and experience attenuation whereas the
SV-type wave is non-dispersive as well as experience no attenuation as it does not
depend on the angular frequency.

(4) It is observed that the MDD model supports the finite speed of thermal wave (CT-
wave) propagation through the medium considered. Hence, this theory is indeed a
generalized theory of thermoelasticity.
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(5) The present work is of geophysical interest for investigations on earthquakes and sim-
ilar phenomena in seismology and engineering where “MDD may play a significant
role”.
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